Statistical remedies against macro information overload

“Dimension reduction” condenses the information content of a multitude of data series into small manageable set of factors or functions. This reduction is important for forecasting with macro variables because many data series have only limited and highly correlated information content. There are three types of statistical methods.The first type selects a subset of “best” explanatory variables (view post here). The second type selects a small set of latent background factors of all explanatory variables and then uses these background factors for prediction (Dynamic Factor Models). The third type generates a small set of functions of the original explanatory variables that historically would have retained their explanatory power and then deploys these for forecasting (Sufficient Dimension Reduction).

(more…)

Selecting macro factors for trading strategies

A powerful statistical method for selecting macro factors for trading strategies is the “Elastic Net”. The method simultaneously selects factors in accordance with their past predictive power and estimates their influence conservatively in order to contain the influence of accidental correlation. Unlike other statistical selection methods, such as “LASSO”, the “Elastic Net” can make use of a large number of correlated factors, a typical feature of economic time series.

(more…)