Using SVAR for macro trading strategies

Structural vector autoregression may be the most practical model class for empirical macroeconomics. Yet, it can also be employed for macro trading strategies, because it helps identifying specific market and macro shocks. For example, SVAR can identify short-term policy, growth or inflation expectation shocks. Once a shock is identified it can be used for trading in two ways. First, one can compare the type of shock implied by markets with the actual news flow and detect fundamental inconsistencies. Second, different types of shocks may entail different types of subsequent asset price dynamics and may, hence, be a basis for systematic strategies.

(more…)

Improving asset return forecasts with wavelets

Time series that are used for forecasting asset returns can carry information on trends of different persistence. Therefore, frequency decomposition of standard signals based on wavelets can improve and expand potential predictors. Similarly, asset returns can be decomposed into parts of different persistence. These can be forecast separately and summed up eventually. This “sum-of-parts” method seems to improve forecast accuracy because its aligns predictors and return trends and helps separating signal from noise.

(more…)