Regression-based macro trading signals

Jupyter Notebook

Regression is one method for combining macro indicators into a single trading signal. Specifically, statistical learning based on regression can optimize model parameters and hyperparameters sequentially and produce signals based on whatever model has predicted returns best up to a point in time. This method learns from growing datasets and produces valid point-in-time signals for backtesting. However, whether regression delivers good signals depends on managing the bias-variance trade-off of machine learning. This post provides guidance on pre-selecting the right regression models and hyperparameter grids based on theory and empirical evidence. It considers the advantages and disadvantages of various regression methods, including non-negative least squares, elastic net, weighted least squares, least absolute deviations, and nearest neighbors.

(more…)

Generic derivative returns and carry (for strategy testing)

Backtesting of macro trading strategies requires good approximate profit-and-loss data for standard derivatives positions, particularly in equity, foreign exchange, and rates markets. Practical calculation methods of generic proxy returns not only deliver valid strategy targets but are also the basis of volatility adjustments of trading factors and for calculating nominal and real “carry” of macro derivatives. A methodological summary for equity index futures, FX forwards, and interest rate swaps shows that generic return and carry formulas need not be complicated. However, decisions on how to simplify and set conventions require good judgment and adjustment to institutional needs.

(more…)

Equity market timing: the value of consumption data

Jupyter Notebook

The dividend discount model suggests that stock prices are negatively related to expected real interest rates and positively to earnings growth. The economic position of households or consumers influences both. Consumer strength spurs demand and exerts price pressure, thus pushing up real policy rate expectations. Meanwhile, tight labor markets and high wage growth shift national income from capital to labor.
This post calculates a point-in-time score of consumer strength for 16 countries over almost three decades based on excess private consumption growth, import trends, wage growth, unemployment rates, and employment gains. This consumer strength score and most of its constituents displayed highly significant negative predictive power with regard to equity index returns. Value generation in a simple equity timing model has been material, albeit concentrated on business cycles’ early and late stages.

(more…)

Advanced FX carry strategies with valuation adjustment

Jupyter Notebook

FX forward-implied carry is a popular ingredient in currency trading strategies because it is related to risk premia and implicit policy subsidies. Its signal value can often be increased by considering inflation differentials, hedging costs, data outliers, and market restrictions. However, even then, FX carry is an imprecise and noisy signal, and previous research has shown the benefits of enhancements based on economic performance (view post here). This post analyses the adjustment of real carry measures by currency over- or undervaluation. As a reference point, it uses point-in-time metrics of purchasing power parity-based valuation estimates that are partly or fully adjusted for historical gaps. The adjustment is conceptually compelling and has historically increased the performance of carry signals across a variety of strategies.

(more…)

Tracking systematic default risk

Systematic default risk is the probability of a critical share of the corporate sector defaulting simultaneously. It can be analyzed through a corporate default model that accounts for both firm-level and communal macro shocks. Point-in-time estimation of such a risk metric requires accounting data and market returns. Systematic default risk arises from the capital structure’s vulnerability and firms’ recent performance, as reflected in equity prices. The metric is both an indicator and predictor of macroeconomic conditions, particularly financial distress. Also, systematic default risk has helped forecast medium-term equity and lower-grade bond returns. This predictive power seems to arise mostly from the price of risk. When systematic default risk is high, investors require greater compensation for taking on exposure to corporate finances.

(more…)

Optimizing macro trading signals – A practical introduction

Jupyter Notebook

Based on theory and empirical evidence, point-in-time indicators of macroeconomic trends and states are strong candidates for trading signals. A key challenge is to select and condense them into a single signal. The simplest (and often successful) approach is conceptual risk parity, i.e., an equally weighted average of normalized scores. However, there is scope for optimization. Statistical learning offers methods for sequentially choosing the best model class and other hyperparameters for signal generation, thus supporting realistic backtests and automated operation of strategies.
This post and an attached Jupyter Notebook show implementations of sequential signal optimization with the scikit-learn package and some specialized extensions. In particular, the post applies statistical learning to sequential optimization of three important tasks: feature selection, return prediction, and market regime classification.

(more…)

Commodity carry as a trading signal – part 2

Jupyter Notebook

Carry on commodity futures contains information on implicit subsidies, such as convenience yields and hedging premia. Its precision as a trading signal improves when incorporating adjustments for inflation, seasonal effects, and volatility. There is strong evidence for the predictive power of various metrics of real carry with respect to subsequent future returns for a broad panel of 23 commodities from 2000 to 2023. Furthermore, stylized naïve PnLs based on real carry point to material economic value, either independently or through managing commodity long exposure. The predictive power and value generation of relative carry signals seem to be even more potent than that of directional signals.

(more…)

Commodity carry as a trading signal – part 1

Commodity futures carry is the annualized return that would arise if all prices remained unchanged. It reflects storage and funding costs, supply and demand imbalances, convenience yield, and hedging pressure. Convenience and hedging can give rise to an implicit subsidy, i.e., a non-standard risk premium, and make commodity carry a valid basis for a trading signal. An empirical analysis of carry for the front futures in 23 markets shows vast differences in size and volatility, with storage costs being a key differentiator. Also, carry is, on average, not strongly correlated across commodities, making it a more diversified signal contributor. To align carry measures more closely with expected premia, one can adjust for inflation, seasonal fluctuations, return volatility, and carry volatility. Most adjusted carry metrics display highly significant predictive power for returns.

(more…)

Sovereign debt sustainability and CDS returns

Selling protection through credit default swaps is akin to writing put options on sovereign default. Together with tenuous market liquidity, this explains the negative skew and heavy fat tails of generic CDS (short protection or long credit) returns. Since default risk depends critically on sovereign debt dynamics, point-in-time metrics of general government debt sustainability for given market conditions are plausible trading indicators for sovereign CDS markets and do justice to the non-linearity of returns. There is strong evidence of a negative relation between increases in predicted debt ratios and concurrent returns. There is also evidence of a negative predictive relation between debt ratio changes and subsequent CDS returns. Trading these seems to produce modest but consistent alpha.

(more…)

Macro demand-based rates strategies

Jupyter Notebook

The pace of aggregate demand in the macroeconomy exerts pressure on interest rates. In credible inflation targeting regimes, excess demand should be negatively related to duration returns and positively to curve-flattening returns. Indeed, point-in-time market information states of various macro demand-related indicators all have helped predict returns of directional and curve positions in interest rate swaps across developed and emerging markets. The predictive power of an equally weighted composite demand score has been highly significant at a monthly or quarterly frequency and the economic value of related strategies has been sizeable.

(more…)