
Regression-based macro trading signals
Regression is one method for combining macro indicators into a single trading signal. Specifically, statistical learning based on regression can optimize model parameters and hyperparameters sequentially and produce signals based on whatever model has predicted returns best up to a point in time. This method learns from growing datasets and produces valid point-in-time signals for backtesting. However, whether regression delivers good signals depends on managing the bias-variance trade-off of machine learning. This post provides guidance on pre-selecting the right regression models and hyperparameter grids based on theory and empirical evidence. It considers the advantages and disadvantages of various regression methods, including non-negative least squares, elastic net, weighted least squares, least absolute deviations, and nearest neighbors.