
Evaluating macro trading signals in three simple steps
Meaningful evaluation of macro trading signals must consider their seasonality and diversity across countries. This post proposes a three-step process to this end. The first step runs significance tests of proposed predictive relations using a panel of markets. The second step reviews the reliability of predictive relations based on accuracy and different correlation metrics across time and markets. The third step estimates the economic value of the signal based on performance metrics of a standardized naïve PnL. All these steps can be implemented with special Python classes of the Macrosynergy package. Conscientious evaluation of macro signals not only benefits their selection for live trading. It also paints a realistic picture of the PnL profile, which is critical for setting risk limits and for broader portfolio integration.