Ten things investors should know about nowcasting

Nowcasting in financial markets is mainly about forecasting forthcoming data reports, particularly GDP releases. However, nowcasting models are more versatile and can be used for a range of market-relevant information, including inflation, sentiment, weather, and harvest conditions. Nowcasting is about information efficiency and is particularly suitable for dealing with big messy data. The underlying models typically condense large datasets into a few underlying factors. They also tackle mixed frequencies of time series and missing data. The most popular model class for nowcasting is factor models: there are different categories of these that produce different results. One size does not fit all purposes. Also, factor models have competitors in the nowcasting space, such as Bayesian vector autoregression, MIDAS models and bridge regressions. The reason why investors should understand their nowcasting models is that they can do a lot more than just nowcasting: most models allow tracking latent trends, spotting significant changes in market conditions, and quantifying the relevance of different data releases.

(more…)

Markets’ neglect of macro news

Empirical evidence suggests that investors pay less attention to macroeconomic news when market sentiment is positive. Market responses to economic data surprises have historically been muted in high sentiment periods. Behavioral research supports the idea that investors prefer heuristic decision-making and neglect fundamental information in bullish markets, but pay more attention in turbulent times. This allows prices to diverge temporarily from fundamentals and undermines the conventional risk-return trade-off when sentiment is high. Low-risk portfolios tend to outperform subsequently. The sentiment bias also means that fundamental predictors of market prices work better in low-sentiment periods than in high-sentiment periods.

(more…)

Macro information waste and the quantamental solution

Financial markets are not macro information efficient. This means that investment decisions miss out on ample relevant macroeconomic data and facts. Information goes to waste due to research costs, trading restrictions, and external effects. Evidence of macro information inefficiency includes sluggishness of position changes, the popularity of simple investment rules, and the prevalence of herding.  A simple and practical enhancement of macro information efficiency is the construction of quantamental indicators. A quantamental indicator is a time series that represents the state of an investment-relevant fundamental feature in real-time. The term ‘fundamental’ means that these data inform directly on economic activity, unlike market prices, which inform only indirectly. The key benefits of quantamental indicators are that [1] they fit machine learning pipelines and algorithmic trading tools, thus making a broad set of macro information tradable, [2] they support the consistent use of macro information, [3] they can be applied across traders (or programs), strategy types and asset classes and are, thus, cost-efficient.

(more…)

Nowcasting with MIDAS regressions

Nowcasting macro-financial indicators requires combining low-frequency and high-frequency time series. Mixed data sampling (MIDAS) regressions explain a low-frequency variable based on high-frequency variables and their lags. For instance, the dependent variable could be quarterly GDP and the explanatory variables could be monthly activity or daily market data. The most common MIDAS predictions rely on distributed lags of higher frequency regressors to avoid parameter proliferation. Analogously, reverse MIDAS models predict a high-frequency dependent variable based on low-frequency explanatory variables. Compared to state-space models (view post here), MIDAS simplifies specification and theory-based restrictions for nowcasting. The R package ‘midasr’ estimates models for multiple frequencies and weighting schemes. In practice, MIDAS has been used for nowcasting financial market volatility, GDP growth, inflation trends and fiscal trends.

(more…)

Nowcasting for financial markets

Nowcasting is a modern approach to monitoring economic conditions in real-time. It makes financial market trading more efficient because economic dynamics drive corporate profits, financial flows and policy decisions, and account for a large part of asset price fluctuations. The main technology behind nowcasting is the dynamic factor model, which condenses the information of numerous correlated ‘hard’ and ‘soft’ data series into a small number of ‘latent’ factors. A growth nowcast can be interpreted as the factor that is most correlated with a diverse representative set of growth-related data series. The state-space representation of the dynamic factor model formalizes how markets read economic data in real-time. The related estimation technique (‘Kalman filter’) generates projections for all data series and estimates for each data release a model-based surprise, called ‘news’. In recent years machine learning models, such as support vector machines, LASSO, elastic net and feed-forward artificial neural networks, have been deployed to improve the predictive power of nowcasts.

(more…)

Macro trading and macroeconomic trend indicators

Macroeconomic trends are powerful asset return factors because they affect risk aversion and risk-neutral valuations of securities at the same time. The influence of macroeconomics appears to be strongest over longer horizons. A macro trend indicator can be defined as an updatable time series that represents a meaningful economic trend and that can be mapped to the performance of tradable assets or derivatives positions. It can be based on three complementary types of information: economic data, financial market data, and expert judgment. Economic data establish a direct link between investment and economic reality, market data inform on the state of financial markets and economic trends that are not (yet) incorporated in economic data, and expert judgment is critical for formulating stable theories and choosing the right data sets.

(more…)

Tradable economics

Tradable economics is a technology for building systematic trading strategies based on economic data. Economic data are statistics that – unlike market prices – directly inform on economic activity. Tradable economics is not a zero-sum game. Trading profits are ultimately paid out of the economic gains from a faster and smoother alignment of market prices with economic conditions. Hence, technological advances in the field increase the value generation or “alpha” of the asset management industry overall. This suggests that the technology is highly scalable. One critical step is to make economic data applicable to systematic trading or trading support tools, which requires considerable investment in data wrangling, transformation, econometric estimation, documentation, and economic research.

(more…)

The quantitative path to macro information efficiency

Financial markets are not information efficient with respect to macroeconomic information because data are notoriously ‘dirty’, relevant economic research is expensive, and establishing stable relations between macro data and market performance is challenging. However, statistical programming and packages have prepared the ground for great advances in macro information efficiency. The quantitative path to macro information efficiency leads over three stages. The first is elaborate in-depth data wrangling that turns raw macro data (and even textual information) into clean and meaningful time series whose frequency and time stamps accord with market prices. The second stage is statistical learning, be it supervised (to validate logical hypotheses), or unsupervised (to detect patterns). The third stage is realistic backtesting to verify the value of the learning process and to assess the commercial viability of a macro trading strategy.

(more…)

How to build a quantamental system for investment management

A quantamental system combines customized high-quality databases and statistical programming outlines in order to systematically investigate relations between market returns and plausible predictors. The term “quantamental” refers to a joint quantitative and fundamental approach to investing. The purpose of a quantamental system is to increase the information efficiency of investment managers, support the development of robust algorithmic trading strategies and to reduce costs of quantitative research. Its main building blocks are [1] bespoke proprietary databases of “clean” high-quality data, [2] market research outlines that analyse the features of particular types of trades, [3] factor construction outlines that calculate plausible trading factors based on theoretical reasoning, [4] factor research outlines that explore the behaviour and predictive power of these trading factors, [5] backtest outlines that investigate the commercial prospects of factor-based strategies, and [6] trade generators that calculate positions of factor-based strategies.

(more…)

The power of R for trading (part 2)

The R environment makes statistical estimation and learning accessible to portfolio management beyond the traditional quant space. Overcoming technicalities and jargon, managers can operate powerful statistical tools by learning a few lines of code and gaining some basic intuition of statistical models. Thus, for example, R offers convenient functions for time series analysis (characterizing trading signals and returns), seasonal adjustment (detecting inefficiencies and cleaning calendar-dependent data), principal component analysis (condensing the information content of large data sets), standard OLS regression (simplest method to check quantitative relations), panel regression (estimating one type of relation across many countries or companies), logistic regression (estimating the probability of categorical events), Bayesian estimation (characterizing uncertainty of trading strategies comprehensively), and supervised machine learning (delegating the exact form of forecasts and signals to a statistical method).

(more…)