Fiscal policy criteria for fixed-income allocation

Jupyter Notebook

The fiscal stance of governments can be a powerful force in local fixed-income markets. On its own, an expansionary stance is seen as a headwind for long-duration or government bond positions due to increased debt issuance, greater default or inflation risk, and less need for monetary policy stimulus. Quantamental indicators of general government balances and estimated fiscal stimulus allow backtesting the impact of fiscal stance information. Empirical evidence for 20 countries since the early 2000s shows that returns on interest rate swap receiver positions in fiscally more expansionary countries have significantly underperformed those in fiscally more conservative countries. Indicators of fiscal stance have been timely, theoretically plausible, and profitable criteria for fixed-income allocations across currency areas.

(more…)

Detecting trends and mean reversion with the Hurst exponent

The Hurst exponent is a statistical measure of long-term memory of time series. The existence and form of such memory are of great interest in financial markets, as financial returns are not generally governed by random walks.
The Hurst exponent is a single scalar value that indicates if a time series is purely random, trending, or rather mean reverting. Thus, it can validate either momentum or mean-reverting strategies. The Hurst exponent uses the variance of a log price series to assess the rate of diffusive behavior. If a time series follows a random walk, its variance simply increases linearly with time elapsed. If instead variance increases with time to the power of an exponent, then a low (Hurst) exponent would indicate mean reversion and a high exponent trending behavior. The Hurst exponent depends on the period used for return calculation. For example, monthly returns can display a memory that is different from daily returns.
The Hurst exponent is estimated rather than calculated. Most methods regress rescaled ranges of the return series on the time span of observations. Code examples are available for Python and R.

(more…)

Modified and balanced FX carry

Jupyter Notebook

There are two simple ways to enhance FX carry strategies with economic information. The first increases or reduces the carry signal depending on whether relevant economic indicators reinforce or contradict its direction. The output can be called “modified carry”. It is a gentle adjustment that leaves the basic characteristics of the original carry strategy intact. The second method equalizes the influence of carry and economic indicators, thus diversifying over signals with complementary strengths. The combined signal can be called “balanced carry”. An empirical analysis of carry modification and balancing with economic performance indicators for 26 countries since 2000 suggests that both adjustments would have greatly improved the performance of vol-targeted carry strategies. Modified carry would also have improved the performance of hedged FX carry strategies.

(more…)

FX trades after volatility shocks

Currency areas with negative external balances are – all other things equal – more vulnerable to financing shocks. Jumps in market price volatility often indicate such shocks. Realistically it takes a few days for the market to fully price the consequences of shocks consistently across currencies. Hence, the products of external balances-based “resilience scores” and volatility shocks are plausible indicators of “post-shock currency hazards”. This means that they should serve as signals for differences in currency returns after market volatility has surged or dropped. An empirical analysis based on 28 currencies since 2000 shows that a most simple “post-shock currency hazard” measure has significantly helped predict subsequent short-term returns and would have added positive PnL to FX trading strategies, particularly in times of turbulence.

(more…)

Identifying the drivers of the commodity market

Commodity futures returns are correlated across many different raw materials and products. Research has identified various types of factors behind this commonality: [i] macroeconomic changes, [ii]  financial market trends, and [iii] shifts in general uncertainty. A new paper proposes to estimate the strength and time horizon of these influences through mixed-frequency vector autoregression. Mixed-frequency Granger causality tests can assess the interaction of monthly, weekly, and daily data without aggregating to the lowest common frequency and losing information. An empirical analysis for 37 commodity futures from all major sectors, based on mixed-frequency Granger causality tests,  suggests that macroeconomic changes are the dominant common driver of monthly commodity returns, while financial market variables exercise commanding influence at a daily frequency.

(more…)

Macro factors of the risk-parity trade

Jupyter Notebook

Risk-parity positioning in equity and (fixed income) duration has been a popular and successful investment strategy in past decades. However, part of that success is owed to a supportive macro environment, with accommodative refinancing conditions and slow, disinflationary, or even deflationary economies. Financial and economic shocks, as opposed to inflation shocks, dominated markets, leading to a negative equity-duration correlation. The macro environment is changeable, however, and a strong theoretical case can be made for managing risk-parity strategies based on economic trends and risk-adjusted carry. We propose simple strategies based on macro-quantamental indicators of economic overheating. Overheating scores have been strongly correlated with risk parity performance and macro-based management would have even benefited risk parity performance even during the past two “golden decades” of risk parity.

(more…)

Identifying market regimes via asset class correlations

A recent paper suggests identifying financial market regimes through the correlations of asset class returns. The basic idea is to calculate correlation matrixes for sliding time windows and then estimate pairwise similarities. This gives a matrix of similarity across time. One can then perform principal component analysis on this similarity matrix and extract the “axes” of greatest relevance. Subsequently, one can cluster the dates in the new reduced space, for example by a K-means method, and choose an optimal number of clusters. These clusters would be market regimes. Empirical analyses of financial markets over the last 20-100 years identify 6-7 market regimes.

(more…)

Jobs growth as trading signal

Employment growth is an important and underestimated macro factor of financial market trends. Since the expansion of jobs relative to the workforce is indicative of changes in slack or tightness in an economy it serves as a predictor of monetary policy and cost pressure. High employment growth is therefore a natural headwind for equity markets. Similarly, the expansion of jobs in one country relative to another is indicative of relative monetary tightening and economic performance. High relative employment growth is therefore a tailwind for the local currency. These propositions are strongly supported by empirical evidence. Employment growth-based trading signals would have added significant value to directional equity and FX trading strategies since 2000.

(more…)

Transaction costs and portfolio strategies

Transaction costs are a key consideration for the development of trading strategies; and not just in final profitability checks. Indeed, disregard for trading costs at the design stage leads to excessive reliance on fleeting small-scale characteristics for return predictors. It also skews the conventional efficient frontier of portfolio choice towards risky trading strategies. A realistic implementable efficient frontier would penalize risky strategies for trading costs, which in turn depend on the size of the risky strategy allocation. This is particularly important for portfolios with large assets under management whose rebalancing has a large market impact. For the development of algorithmic trading strategies with machine learning, it can be highly beneficial to integrate transaction costs into the learning process. A recent paper proposes a “portfolio machine learning method” to that end.

(more…)

Intervention liquidity

Unsterilized central bank interventions in foreign exchange and securities markets increase base money liquidity independently from demand. Thus, they principally affect the money price of all assets. Since intervention policies are often persistent, reported trends are valid predictors of future effects. If markets are not fully macro information efficient, sustained relative intervention liquidity trends, distinguishing more supportive from less supportive central banks, are plausible predictors of the future relative performance of assets across different currency areas. Indeed, empirical evidence suggests that past trends of estimated intervention liquidity help predict future relative return performance of equity index futures, long-long equity-duration positions, and FX positions across countries.

(more…)