
Financial econometrics and machine learning
Supervised machine learning enhances the econometric toolbox by methods that find functional forms of prediction models in a manner that optimizes out-of-sample forecasting. It mainly serves prediction, whereas classical econometrics mainly estimates specific structural parameters of the economy. Machine learning emphasizes past patterns in data rather than top-down theoretical priors. The prediction function is typically found in two stages: [1] picking the “best” form conditional on a given level of complexity and [2] picking the “best” complexity based on past out-of-sample forecast performance. This method is attractive for financial forecasting, where returns depend on many complex relations most of which are not well understood even by professionals, and where backtesting of strategies should be free of theoretical bias that arises from historical experience.