Contagion and self-fulfilling dynamics

Contagion and self-fulfilling feedback loops are propagation mechanisms at the heart of systemic financial crises. Contagion refers to the deterioration of fundamentals through the financial network, often through a cascade of insolvencies. A critical factor is the similarity of assets held by financial institutions. The commonality of assets erases some of the benefits of diversification because it facilitates contagion. The potential role of investment funds in aggravating contagion through fire sales has much increased over the past 20 years. Self-fulfilling feedback loops denote the shift from one equilibrium to another, possibly without a change in ‘fundamentals’. They arise from multiple equilibria and strong interdependencies in a financial network. Bank runs are a classic example. Simple metrics that track both types of systemic risk are principal components and cross-correlation coefficients of different types of financial assets.

(more…)

Macro uncertainty as predictor of market volatility

Market volatility measures the size of variations of asset returns. Macroeconomic uncertainty measures the size of unpredictable disturbances in economic activity. Large moves in macroeconomic uncertainty are less frequent and more persistent than shifts in market volatility. However, macroeconomic uncertainty is an important driver of market volatility because it is related to future earnings and dividend discount rates. One proxy of macro uncertainty is a weighted average of forecasting errors over a wide set of macroeconomic indicators. Empirical evidence suggests that this proxy of latent macro uncertainty is a significant predictor of volatility and volatility jumps.

(more…)

Classifying market states

Typically, we cannot predict a meaningful portion of daily or higher-frequency market returns. A more realistic approach is classifying the state of the market for a particular day or hour. A powerful tool for this purpose is artificial neural networks. This is a popular machine learning method that consists of layers of data-processing units, connections between them and the application of weights and biases that are estimated based on training data. Classification with neural networks is suitable for complex structures and large numbers of data points. A simple idea for a neural network approach to financial markets is to use combinations of price trends as features and deploy them to classify the market into simple buy, sell or neutral labels and to estimate the probability of each class at each point in time. This approach can, in principle, be extended to include trading volumes, economic data or sentiment indicators.

(more…)

What traders should know about seasonal adjustment

The purpose of seasonal adjustment is to remove seasonal and calendar effects from economic time series. It is a common procedure but also a complex one, with side effects. Seasonal adjustment has two essential stages. The first accounts for deterministic effects by means of regression and selects a general time series model. The second stage decomposes the original time series into trend-cycle, seasonal, calendar and irregular components.
Seasonal adjustment does not generally improve the quality of economic data. There is always some loss of information. Also, it is often unclear which calendar effects have been removed. And sometimes seasonal adjustment is just adding noise or fails to remove all seasonality. Moreover, seasonally adjusted data are not necessarily good trend indicators. By design, they do not remove noise and outliers. And extreme weather events or public holiday patterns are notorious sources of distortions. Estimated trends at the end of the series are subject to great uncertainty. Furthermore, seasonally adjusted time series are often revised and can be source of bias if these data are used for trading strategy backtests.

(more…)

Inflation and precious metal prices

Theory and plausibility suggest that precious metal prices benefit from inflation and negative real interest rates. This makes gold, silver, platinum, and palladium natural candidates for hedges against inflationary monetary policy. Long-term empirical evidence supports the inflation-precious metal link. However, there are important qualifications. First, the equilibrium relation between consumer and metal prices can take many years to re-assert itself and short-term excesses in relative prices are common. Second, the relationship between precious metal and consumer prices can change over time as a consequence of evolving market structures or diverging supply and demand conditions. And third, the equilibrium relationship works better for gold, platinum and palladium than for silver.

(more…)

Real-time growth estimation with reinforcement learning

Survey data and asset prices can be combined to estimate high-frequency growth expectations. This is a specific form of nowcasting that implicitly captures all types of news on the economy, not just official data releases. Methods for estimation include the Kalman filter, MIDAS regression, and reinforcement learning. Since reinforcement learning is model-free it can estimate more efficiently. And a recent paper suggests that this efficiency gain brings great benefits for nowcasting growth expectations. Nowcasting with reinforcement learning can be applied to expectations for a variety of macro variables.

(more…)

Estimating the positioning of trend followers

There is a simple method of approximating trend follower positioning in real-time and without lag. It is based on normalized returns in liquid futures markets over plausible lookback windows, under consideration of a leverage constraint, and uses estimated assets under management as a scale factor. For optimization and out-of-sample analysis, the approach can be enhanced by sequential estimation of some key parameters, such as the momentum lookback, the normalized momentum cap and the lookback for realized volatility calculation. Trend follower positions are an important factor of endogenous market risk due to the size of assets under management in dedicated funds and the informal use of trend rules across many trading accounts.

(more…)

Forecasting energy markets with macro data

Recent academic papers illustrate how macroeconomic data support predictions of energy market flows and prices. Valid macro indicators include shipping costs, industrial production measures, non-energy industrial commodity prices, transportation data, weather data, financial conditions indices, and geopolitical uncertainty measures. Good practices include a focus on “small” models and a reduction of the dimensionality of large datasets. Forecasts can extend to predictions of the entire probability distribution of prices and – hence – can be used to assess the probability of breakouts from price ranges.

(more…)

Fundamental trend following

Fundamental trend following uses moving averages of past fundamental data, such as valuation metrics or economic indicators, to predict future fundamentals, analogously to the conventions in price or return trend following. A recent paper shows that fundamental trend following can be applied to equity earnings and profitability indicators. One approach is to pool fundamental information across a range of popular indicators and to sequentially choose lookback windows for moving averages in accordance with past predictive power for returns. The fundamental extrapolation measure predicts future stock returns positively and would historically have generated significant profits. Most importantly, fundamental trend following returns seems to have little correlation with price trend following returns, supporting the idea that these trading styles are complementary.

(more…)

Prospect theory value as investment factor

Prospect theory value as investment factor

Prospect theory value is a valid investment factor, particularly in episodes of apparent market inefficiency. Prospect theory is a popular model of irrational decision making. It emphasizes a realistic mental representation of expected gains and losses and an individual’s evaluation of such representations. Prospect theory explains asymmetric loss aversion (view post here) and gambling preferences (view post here). Since mental representations of expected returns and volatility are often driven by price charts, prospect theory value can be estimated based on historic asset return distributions. Assets with a high prospect theory value should have low subsequent returns and vice versa. This proposition holds even if part of the market is fully rational as long as there are balance sheet and risk limits. Empirical academic papers have confirmed the prospect theory value in international equity, corporate bond and foreign exchange markets.

(more…)