
Reward-risk timing
Reward-risk timing refers to methods for allocating between a risky market index and a risk-free asset. It is a combination of reward timing, based on expected future risk asset returns, and volatility timing, based on recent price volatility. A new paper proposes to use machine learning with random forests for estimating both risk premia (return expectations) and optimal lookback windows for volatility estimates This method allows for non-linear prediction interaction and averages forecasts across a range of simplistic valid prediction functions. In an empirical analysis with data going back to 1952 the random forest method for reward-risk timing has outperformed other methods and earned significantly higher risk-adjusted returns than a buy-and-hold strategy.